skip to main content


Search for: All records

Creators/Authors contains: "Crew, Geoffrey B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The collimation of relativistic jets launched from the vicinity of supermassive black holes (SMBHs) at the centers of active galactic nuclei (AGNs) is one of the key questions to understand the nature of AGN jets. However, little is known about the detailed jet structure for AGN like quasars since very high angular resolutions are required to resolve these objects. We present very long baseline interferometry (VLBI) observations of the archetypical quasar 3C 273 at 86 GHz, performed with the Global Millimeter VLBI Array, for the first time including the Atacama Large Millimeter/submillimeter Array. Our observations achieve a high angular resolution down to ∼60 μ as, resolving the innermost part of the jet ever on scales of ∼10 5 Schwarzschild radii. Our observations, including close-in-time High Sensitivity Array observations of 3C 273 at 15, 22, and 43 GHz, suggest that the inner jet collimates parabolically, while the outer jet expands conically, similar to jets from other nearby low-luminosity AGNs. We discovered the jet collimation break around 10 7 Schwarzschild radii, providing the first compelling evidence for structural transition in a quasar jet. The location of the collimation break for 3C 273 is farther downstream from the sphere of gravitational influence (SGI) from the central SMBH. With the results for other AGN jets, our results show that the end of the collimation zone in AGN jets is governed not only by the SGI of the SMBH but also by the more diverse properties of the central nuclei. 
    more » « less
  2. Abstract We report measurements of the gravitationally lensed secondary image—the first in an infinite series of so-called “photon rings”—around the supermassive black hole M87* via simultaneous modeling and imaging of the 2017 Event Horizon Telescope (EHT) observations. The inferred ring size remains constant across the seven days of the 2017 EHT observing campaign and is consistent with theoretical expectations, providing clear evidence that such measurements probe spacetime and a striking confirmation of the models underlying the first set of EHT results. The residual diffuse emission evolves on timescales comparable to one week. We are able to detect with high significance a southwestern extension consistent with that expected from the base of a jet that is rapidly rotating in the clockwise direction. This result adds further support to the identification of the jet in M87* with a black hole spin-driven outflow, launched via the Blandford–Znajek process. We present three revised estimates for the mass of M87* based on identifying the modeled thin ring component with the bright ringlike features seen in simulated images, one of which is only weakly sensitive to the astrophysics of the emission region. All three estimates agree with each other and previously reported values. Our strongest mass constraint combines information from both the ring and the diffuse emission region, which together imply a mass-to-distance ratio of 4.20 − 0.06 + 0.12 μ as and a corresponding black hole mass of (7.13 ± 0.39) × 10 9 M ⊙ , where the error on the latter is now dominated by the systematic uncertainty arising from the uncertain distance to M87*. 
    more » « less
  3. Abstract The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation 1,2 . Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole 3 . Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of $${8.4}_{-1.1}^{+0.5}$$ 8.4 − 1.1 + 0.5 Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024
  4. In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3−3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30° relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5 × 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. Abstract

    Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣v∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣vint∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. Abstract

    The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024